
Simulation of Linear Mechanical Systems

S. W. Sirlin

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, CA 91109

N94-14641

INTRODUCTION

A dynamics and controls analyst is typically presented with a structural dy-

namics model and must perform various input/output tests and design control laws.

The required time/frequency simulations need to be done many times as models

change and control designs evolve.

This paper examines some simple ways that open and closed loop frequency

and time domain simulations can be done using the special structure of the system

equations usually available. Routines were developed to run under Pro-Matlal) [1]

in a mixture of the Pro-Matlab interpreter and Fortran (using the .mex facility).

These routines are often orders of magnitude faster than trying the typical "brute

force" approach of using built-in Pro-Matlab routines such as bode. This makes the

analyst's job easier since not only does an individual run take less time, but much

larger models can be attacked, often allowing the whole model reduction step to be
eliminated.

I will first briefly discuss the standard model forms, then address each of the

simulation cases separately.

LINEAR MECHANICAL SYSTEM MODELS

Linear mechanical system models have a special second order differential form.

In general the various structural dynamics codes generate equations in the form:

Mil" + N_I + Kq = Bu + G f, (1)

y = Cpq + C,,(7 + Du,

where qeR n is the modal state, ueR m is the control input, yeR p is the output,

and feR q is the disturbance input. Systems of the above form can almost always

(generically) be put into modal form, and this modal form is typically what is given

__to the dynamics and controls analyst by the structural modellers (e.g. NASTRAN

output):

365

/_ + 2E_ + Art = Bu + G f, (2)

y = Cpr 1 + Cvi I + Du,

where r/eR" is the modal state, E and A are diagonal matrices, u and f are the

control input and disturbance force respectively, and y is the output which can be

position, velocity, input force, or some combination of these. The transformation

to the form (2) is not easy for general damping, (N) but typically damping is so

poorly known that simple modal damping models suffice. I will assume that (2) is

available for the rest of the paper.

The standard analysis tools of Pro-Matlab require first order form,

be done as follows:

k. = fi.x -F/3u + G f,

° '1x = q , -A -2E '

which can

(3)

Note that the special structure does not fit any of the standard forms (block diag-

onal, triangular, banded, or Hessenberg).

To the above plant equations must be added typical control dynamics:

(v = Acw + Bc(r - y), (4)

u = Cow + Dc(r - y),

where r is some reference command input. Again resorting to brute force we have

the whole system:

[BDc]/)=LB c ,

k = Az +/)r + &f,

y = _z,

-B_O Ac]'

(5)

366

Note that now eventhe specialstructure of (3) is not present(in general)evenin the
upper left block of the A matrix. Due to the feedback we have lost all information

regarding the eigenstructure. The system may not even be very sparse anymore.

FREQUENCY DOMAIN RESPONSE - OPEN LOOP

If we desire to compute the open loop frequency response for (2,3)

H(s) = C'(Is- fi.)-'B,

there is the built-in bode command of Pro-Matlab, that uses the well known method

of Laub [2]. While the method is efficient for the general case, given the special

structure of (2) we can write down a much simpler solution:

(Cpit + C,,.s)Bt._

Hij(sk) = _']=1 s_ + 2_,wtsk +w_"

This can be easily implemented using just a few lines of the Pro-Matlab in-

terpreter, the only trick being to come up with some way of representing a rank 3

array. The header of a routine that does this, freqm2d, is listed in the Appendix.

Timing results are as one would expect. From Figure 1 (results obtained on a VAX

11/780), the brute force computation time increases roughly quadratically, while

the direct solution requires only a linear cost with system order.

FREQUENCY DOMAIN RESPONSE- CLOSED LOOP

Once the system of (2,4) is put into the form (5) then the same standard tools

apply as for the open loop case. As was pointed out above, the feedback destroys

all of the open loop eigenstructure, hence there is no direct solution as in the open

loop case. On the other hand consider Figure 2. Taking an "analog" approach to

the analysis, given the individual transfer functions for the plant and the control

one can combine them to get the overall transfer function via the usual algebra in

the frequency domain:

H(s) = GF(I + GF) -_ = G(I + GF)-a F = (I + GF)-aGF.

In comparison to the brute force approach, there are a few issues:

o We can take advantage of any special forms for the individual blocks - this is

clearly advantageous.

: 367

9O
frequency response computation

i

8O

70

_" 60

'2

5o

4O

30

20
0 35

.........................2_'_=::.................
' ' ' 2'0 ' 3?5 I0 15 25

sws 14-Aug-92 system order

Figure 1. Computation time for open loop frequency response: Hessenberg versus

freqm2d (specialized for mechanical systems). The test case is a second order system
with a variable number of modes.

CONTROL I_ANT

Figure 2. A simple closed loop system.

o We require matrix inversion of the order of the minimal input (to the plant or

the control) 2 this is not clearly good or bad computationally. We're trading

the usual n 2 cost for m 3, which is likely to be advantageous for large plants

with only a few feedback loops, but a loss for full state feedback.

o The technique allows work directly with experimentally determined transfer

functions - there is no need for system identification to proceed all the way to

a state space model.

o We require storage of the intermediate results - this is an implementation issue.

Currently the routines I have [3] first generate the individual transfer functions

then combine the results. In some cases the memory to hold all the individual

transfer functions can be quite high. This cost can be eliminated by moving

the whole routine to Fortran however. The header of a routine that implements

this, feedbackmtf, is listed in the Appendix.

As a simple example, consider a plant with 64 modes, 4 outputs, rn inputs, and

rn pseudo-derivative feedback controllers. Timing results (again on a VAX 11/780)

for a modest test case are shown in Figure 3.

IOs

104

l0 s

transfer functioncomputation time

generic

feedbackmtf

i , t i I

1024 6 8 I0 12 14 16

sws 14-Aug-92 control statcs

Figure 3. Computation time for closed loop frequency response: generic system

approach versus subsystem approach (feedbackm¢.f). A 64 mode example with a

variable amount of feedback.

369

A more stressingtest, but one of practical interest was the NASA CSI (Control
Structure Interaction) Focus Mission Interferometer (FMI) structural control [4].

The FMI is a 30m baseline interferometer, with the goal of controlling optical

pathlength to the nanometer level. The plant model has 527 modes, with 17 rigid

body modes and modal frequencies from 3_.9 to 40000Hz. To this we want to add

25 9-state controllers with displacement and force measurements, and force output.

This gives a total system order of 1279. Use of the Hessenberg routines on the whole

system is completely unrealistic in this case. Model reduction is a sensible approach,

especially as modes above 100 Hz are not believable. On the other hand it is clear

that model reduction is only required due to the numerical inefficiency of dealing

with the problem as a whole block. Calculations of the individual components can

be easily carried out using the full model without having to worry about truncation

issues such as residual flexibility or the need for augmenting the reduced system with

Ritz vectors [5]. The computation (for 1068 frequency points) took 4640s inverting

the 25 x 25 input force matrix at every frequency. If this is to be done many times

for the same system, then clearly model reduction is desirable, but if done only a

few times (as was the case here), then model reduction isn't worthwhile. In this

case only a 1 x 1 inverse is really required as the structural loops are all uncoupled,

and so some time is certainly wasted in the (LINPACK) routine checking zeroes.

Trying to construct more efficient routines I've run into some of the limitations of
Pro-Matlab:

o

o

Using an external (Fortran) routine many times (say for sequentially closing

many loops) can lead to enormous allocation of unnecessary memory,

Describing a system as separate blocks requires a data object much more com-

plex than a matrix. What is needed is the concept of a data structure, for

example that of the C language, or even better something that could be cre-

ated, changed, and destroyed interactively such as the generalized arrays of

APL2 or J[6]. Without this function, input lists must be long and specialized

to particular cases.

In spite of these limitations, the tool is quite useful, enabling analysis for large

systems and being fast for more modest systems.

TIME DOMAIN RESPONSE - OPEN LOOP

While the general solution to (3) is given by the well known matrix exponential,

this is very difficult and expensive to compute in practice for general systems [7],

often requiring a model reduction step.

370

On the other hand, the solution to (2) above is quite obvious since we just hax_e

a set of uncoupled second order equations. The solution is

fT = Bu + G f,

where the (I)k and Fk matrices are easily calculated given the k th eigenvalue (with

various special cases depending on whether it is 0, real, imaginary, or complex). The

computational cost increases linearly with state order. In addition the propagation

from one time to the next can be done with a 2n × 2 matrix (n (I)k'S) versus the

usual 2n > 2n exponential matrix, saving on storage space.

Results for the Galileo spacecraft present another practical case of interest. The

model at hand was built for investigating the possibility of finding ways to shake

the spacecraft to free the stuck high gain antenna. The model had 142 modes, with

8 rigid body modes (6 for the whole plus the dual spin main bearing and a scan

platform bearing), and with structural modal frequencies from 0.143 to 144Hz. In

the case shown the response of the system to the deployment and stow of a movable

low gain antenna (LGA) was investigated. We've also looked at the system response

to thruster firings and to torques at the spin bearing and scan platform bearing.

The routines were coded in Fortran, linked to Pro-Matlab, and run on a Sun

SPARCstation 2 (Figure 4). The header for the main routine, Isim2, is listed in

the Appendix. The computational gain in comparison to the standard built in

Pro-Matlab c2d and lsim on the whole system is evident.

TIME DOMAIN RESPONSE - CLOSED LOOP

To see how to close the loop we look first at a simple coupled system with no

external inputs:

Xl : AlXl + A_x2,

ks = Blxl + B:x:.

The exact solution is again the matrix exponential

x(t) = _(t).VO = cAtxo, A = BI B2 '

371

o"

,M

0

open loop response calculation

I _............
c2d and Isim

l0 2

101 Isim2 /

i L z i i i i t I

10°0 200 400 600 800 1000 1200 1400 1600 1800 2000

sws 14-Aug-92 time steps

Figure 4. Galileo LGA deployment response calculation cost. Standard approach

(c2d and Isirn) versus approach specialized for mechanical systems (Isim$).

(t) = I + B1 B2 B1A1 + B2B1 BIA2 + B _ +

Unlike the frequency domain case, we can't easily find the response of the two

systems separately and then combine algebraically (this would require a convolution

in time). On the other hand if x2 were controller states in a discrete controller, we

would be perfectly justified in generating the responses for each system separately

assuming a zero order hold for the other system, as this is exactly what really

happens. Arguing that this must still be reasonable for low pass analog controllers,

we have an approximate solution:

3c(t)=_(t)x° = [¢13'2 ¢271] XO,

372

t
¢1 = e Alt, 71 = eAt(t-r)drA2,

¢2 = e B_t, 72 = eB2(t-_)drBl,

[al A2]t+[A_ A1m2]t 24(t)=I+ B, B2 [B2B, B22
4-

Comparing the approximate to the true solution, we see that

___= [A2B1 A2B2] t 2BIA1 BIA2 2 +''" '

so that the error e(t) = IIx- 11 is of order t 2, so this method is of order 1. With this

method we can use any special structure present in the individual subsystems, which

can save considerable computational cost. On the other hand we must make sure

to take a small enough time step. Currently a Fortran/Pro-Matlab implementation

just uses a fixed step size. Local error estimates could be used to warn of possible

trouble or change the step size. The routine Isim2fb (the header is listed in the

Appendix) is the current implementation of these ideas.

Returning to the Galileo example, the previous section mentioned 8 rigid body

modes, but the spin bearing and scan platform bearing (these are called the Clock

and Cone degrees of freedom for the scan platform) are likely to be in a "caged"

mode, actively controlled to have about 0.25Hz natural frequency with 70% damp-

ing ratio. A 2-state controller was added to implement this. Figure 5 shows the re-

sults of a Fortran/Pro-Matlab implementation, again comparing with the standard

generic path in Pro-Matlab on a Sun SPARCstation 2. Note that the simulation

times are very close to the open loop case. The difference in the system state was

less than 4% for this case, in which the time step used was llmsec. The time step

was chosen based on the minimum discretization for thruster pulses rather than to

minimize simulation error.

SUMMARY AND CONCLUSIONS

A set of tools has been built specifically for linear mechanical systems, open

and closed loop, for use with Pro-Matlab. These tools use the pre-existing open

loop eigenstructure typically available for structural dynamics models, which can

save orders of magnitude in cpu time for typical problems.

373

lO4
closed loop response calculation

m

.hd

O

103

102

101

generic

,........_.. Isim2J'b
l
i

/*

i t t

1°°0---?_0 10oo doo 2_ 2;0o 3_ 3500 4000 4500

sws 14-Aug-92 time steps

Figure 5. Galileo LGA response calculation cost given closed loop clock and

cone control. Standard @stem approach versus approximate subsystem approach

(Isim2fb).

For closed loop systems, treating the analysis of each block separately allows

analysis of problems that might otherwise be too large, reducing or eliminating the

model reduction step in the analysis.

ACKNOWLEDGEMENT

This work was performed at the Jet Propulsion Laboratory, California Institute

of Technology, under a contract with the National Aeronautics and Space Admin-

istration.

REFERENCES

1. Pro-Matlab User's Guide and Control System Toolbox, The Math\Vorks, Inc.,

Natick, MA, 1990.

374

2. A. J. Laub, "Efficient Multivariable Frequency Response Computations," IEEE

Transactions on Automatic Control, Vol. AC-26, No. 2, April 1981.

3. S. W. Sirlin, "Pro-Matlab Functions for Frequency Response," JPL EM 343-

1163, December 1989 (JPL internal document).

4. S. W. Sirlin, "Active Structural Control for Damping Augmentation and Com-

pensation of Thermal Distortion," Second Joint Japan-U.S.A. Conference on

Adaptive Structures, Nagoya, Japan, November 1991.

5. C.C. Chu, M. H. Milman, "Computational Issues in Optimal Tuning and Place-

ment of Passive Dampers," this proceedings.

6. R.K.W. Hui, K.E. Iverson, E.E. McDonnell, A. Whitney, "APL \ ?," APL

Quote Quad, Volume 20, Number 4, July, 1990, pp. 192-200.

7. C. Moler, C. van Loan, "Nineteen Dubious Ways to Compute the Exponential

of a Matrix," SIAM Review, Vol. 20, No. 4, October 1978.

375

APPENDIX
SOME SELECTED Pro-Matlab ROUTINES FOR SIMULATION

Below are included the selectionsfrom headersfor the main routines used in
the aboveexamples.

I. Frequencydomain

A. Open loop
function [ht] = freqm2d(sigma2,omega2,b,c,d,np, w)

_, [h] = freqm2d(sigma2,omega2,b,c,d,np, w)

_,MIM0 tf calculation, given second order modal form

Y.

7.

Y, Y = [yp]

Y, [yv]
V,

% yp = cp x + dp u

% yv = cv s x + dv s u

Y.
Y, C = [cp] d = [dp] size np

y, [cv] [dv]

7.
_,The results are returned in a matrix

7.

Y, h = [hll, h12, ..., him,]

Y, [h21, ...]

Y. [...

X

Y,given m inputs and q outputs,

Y,where each hij is an npts x I vector.

X

sA 2 x(i) + sigma2(i) s x(i) +omega2(i) x(i) = b(i,:) u

B. Closed loop

function ht=feedbackmtf(g,mg,ng,fg, h,mh,nh,fh, np)

function ht=feedbackmtf(g,mg,ng,fg, h,mh,nh,fh, np)

Combine the frequency response of two systems in a feedback

376

loop.

Y, Two vector inputs and two vector outputs are allowed for:

%

% r ÷ ug

--Mg-->o >G

% - I

% I

% Fh

% I

% I

% <--Nh,

% yh
%

Ng--> yg

I

I

Fg

I

I+

H< o<--Mh-- d

uh +

II. Time domain

A. Open loop

% function [x, dx]= Isim2(sigma,lambda,b,u,dt,xO, dxO);

% Generate the time response of the system:

%

% (dA2)x + 2 sigma dx + lambda x = b*u

%

B. Closed loop

%function [y,u,x,dx,maxle]= Isim2fb(sigma,lambda,b,g,f,cp,cv,...

Ac,Bc,Cc,Dc, r,dt,x0, dx0);

%

Generate the time response of a second order system with feedback:

(d/dt)A2 x + 2 sigma (d/dt)x + lambda x = b u + g f

y = cp x + cv (d/dt) x

(d/dt) w = Ac w + Bc (r-y)

u = Ccw + Dc (r-y)

377

